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Question 1. Decompose the Expected Prediction Error into three parts: Irreducible error,

squared Bias, and Variance ’

Solution: We treat xy and f as fixed, i.e. non-random. Note that Y is not in the

original sample, and so f is independent of both Y, and 7. We have:

BPE = (Yo - f(a0)’] = B[ (#(@0) + 2 — F(@0))'] = B [(s0+ (o) = F@)))’]
= B[] + 28 [z0 (o) = Fl@o)] + B |(£(@o) ~ Flao))].

Consequently,
EPE =02 + E [( @) — A(wo))z} — Irreducible error + Reducible error.
Now we focus on the Reducible error:
£ (#(@o) -
= ((e0) — B[f@o)] ) +28 [(fwo) — B[fwo)] ) (B[ 7)) - Fa))]
+E [(E[A(wo)} _ A(a;0)>2] .

The middle term is zero again. To see this note that the only random component in this

~

term is f(x), and E[E [f(a;o)} - f(wg)} = 0. Hence, the Reducible error is:

() - E[fan)] ) + £ | (B[] - flwa))
= (E[f@0] - )+ B | () - £[an)] ) |
_ Bias? (f(wo)) + Var(A(azo)>

Putting it all together,

EPE = 0? + Bias® ( A(azo)) + Var( A(a:o)).
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Question 2. Show that the OLS estimator is unbiased, i.e., derive the following:
EB = B.

Treat the x values as fixed (i.e. non-random) and use the formula for the OLS estimator.

Solution: Recall that the expected value of the error terms in the MLR model is zero.
We will make use of the following formulas (and all the corresponding notation) from
Lecture 3:

B=(X"X)"'XTy  and

y=XpB+e.

In the following expected value calculations, non-random matrixes are treated as con-

stants, which we can be factored out of the expected values. We have:

EB=FE

:(XTX)‘IXTy]
=B _(XTX)‘lXT(XB + s)}

(XTX) ' X"e

= E—(XTX)lXTXﬁ} +F

= (XTX)" M XTX)B+ (XTX) ' XTEe
= 8.
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Question 3. Let yi,...,y, be a sample from a distribution with the density function
p(y;0) = 0y’ for 0 < y < 1, where > 0.
Find 6, the maximum likelihood estimator of 6.

Compute 6 for the sample y; = 0.35, yo = 0.28, y3 = 0.91.

Solution: The likelihood function is

€0) = p(y1; 0)p(y2; 0) - . . p(Yn; 0)

= [0y
=1
=0 TTv/ "
=1

Taking the natural log:

L(68) = og(((6)) = nlog(6) + (6~ 1) log(s).

The first derivative is

O S o).

The first derivative is zero at 0:

Thus,

i1 log(yi)
For the sample 0.35,0.28,0.91, we have:

~ -3
0 —
log(0.35) + log(0.28) 4 log(0.91)

=1.24.
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