Question 1. Decompose the Expected Prediction Error into three parts: Irreducible error, squared Bias, and Variance

Solution: We treat \boldsymbol{x}_{0} and f as fixed, i.e. non-random. Note that Y_{0} is not in the original sample, and so \hat{f} is independent of both Y_{0} and ε_{0}. We have:

$$
\begin{aligned}
\mathrm{EPE} & =E\left[\left(Y_{0}-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)^{2}\right]=E\left[\left(f\left(\boldsymbol{x}_{0}\right)+\varepsilon_{0}-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)^{2}\right]=E\left[\left(\varepsilon_{0}+\left(f\left(\boldsymbol{x}_{0}\right)-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)\right)^{2}\right] \\
& =E\left[\varepsilon_{0}^{2}\right]+2 E\left[\varepsilon_{0}\left(f\left(\boldsymbol{x}_{0}\right)-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)\right]+E\left[\left(f\left(\boldsymbol{x}_{0}\right)-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)^{2}\right] .
\end{aligned}
$$

Note that $2 E\left[\varepsilon_{0}\left(f\left(\boldsymbol{x}_{0}\right)-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)\right]=0$, because ε_{0} is independent from $\left(f\left(\boldsymbol{x}_{0}\right)-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)$, and $E\left[\varepsilon_{0}\right]=0$, which implies $E\left[\varepsilon_{0}\left(f\left(\boldsymbol{x}_{0}\right)-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)\right]=E\left[\varepsilon_{0}\right] E\left[f\left(\boldsymbol{x}_{0}\right)-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]=0$. Also note that, by definition, $\operatorname{Var}\left(\varepsilon_{0}\right)=E\left[\varepsilon_{0}^{2}\right]-\left(E\left[\varepsilon_{0}\right]\right)^{2}$. Thus, $E\left[\varepsilon_{0}^{2}\right]=\operatorname{Var}\left(\varepsilon_{0}\right)=\sigma^{2}$. Consequently,

$$
\mathrm{EPE}=\sigma^{2}+E\left[\left(f\left(\boldsymbol{x}_{0}\right)-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)^{2}\right]=\text { Irreducible error }+ \text { Reducible error. }
$$

Now we focus on the Reducible error:

$$
\begin{aligned}
& E\left[\left(f\left(\boldsymbol{x}_{0}\right)-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)^{2}\right]=E\left[\left(f\left(\boldsymbol{x}_{0}\right)-E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]+E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)^{2}\right] \\
& =\left(f\left(\boldsymbol{x}_{0}\right)-E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]\right)^{2}+2 E\left[\left(f\left(\boldsymbol{x}_{0}\right)-E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]\right)\left(E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)\right] \\
& +E\left[\left(E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)^{2}\right]
\end{aligned}
$$

The middle term is zero again. To see this note that the only random component in this term is $\widehat{f}\left(\boldsymbol{x}_{0}\right)$, and $E\left[E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]=0$. Hence, the Reducible error is:

$$
\begin{aligned}
& \left(f\left(\boldsymbol{x}_{0}\right)-E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]\right)^{2}+E\left[\left(E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]-\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)^{2}\right] \\
& =\left(E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]-f\left(\boldsymbol{x}_{0}\right)\right)^{2}+E\left[\left(\widehat{f}\left(\boldsymbol{x}_{0}\right)-E\left[\widehat{f}\left(\boldsymbol{x}_{0}\right)\right]\right)^{2}\right] \\
& =\operatorname{Bias}^{2}\left(\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)+\operatorname{Var}\left(\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)
\end{aligned}
$$

Putting it all together,

$$
\mathrm{EPE}=\sigma^{2}+\operatorname{Bias}^{2}\left(\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)+\operatorname{Var}\left(\widehat{f}\left(\boldsymbol{x}_{0}\right)\right)
$$

Question 2. Show that the OLS estimator is unbiased, i.e., derive the following:

$$
E \widehat{\boldsymbol{\beta}}=\boldsymbol{\beta}
$$

Treat the x values as fixed (i.e. non-random) and use the formula for the OLS estimator.

Solution: Recall that the expected value of the error terms in the MLR model is zero. We will make use of the following formulas (and all the corresponding notation) from Lecture 3:

$$
\begin{aligned}
& \widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y} \quad \text { and } \\
& \boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} .
\end{aligned}
$$

In the following expected value calculations, non-random matrixes are treated as constants, which we can be factored out of the expected values. We have:

$$
\begin{aligned}
E \widehat{\boldsymbol{\beta}} & =E\left[\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}\right] \\
& =E\left[\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon})\right] \\
& =E\left[\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\beta}\right]+E\left[\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{\varepsilon}\right] \\
& =\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right) \boldsymbol{\beta}+\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} E \boldsymbol{\varepsilon} \\
& =\boldsymbol{\beta}
\end{aligned}
$$

Question 3. Let y_{1}, \ldots, y_{n} be a sample from a distribution with the density function $p(y ; \theta)=\theta y^{\theta-1}$ for $0<y<1$, where $\theta>0$.

Find $\hat{\theta}$, the maximum likelihood estimator of θ.
Compute $\hat{\theta}$ for the sample $y_{1}=0.35, y_{2}=0.28, y_{3}=0.91$.

Solution: The likelihood function is

$$
\begin{aligned}
\ell(\theta) & =p\left(y_{1} ; \theta\right) p\left(y_{2} ; \theta\right) \ldots p\left(y_{n} ; \theta\right) \\
& =\prod_{i=1}^{n} \theta y_{i}^{\theta-1} \\
& =\theta^{n} \prod_{i=1}^{n} y_{i}^{\theta-1} .
\end{aligned}
$$

Taking the natural log:

$$
L(\theta)=\log (\ell(\theta))=n \log (\theta)+(\theta-1) \sum_{i=1}^{n} \log \left(y_{i}\right) .
$$

The first derivative is

$$
\frac{d L(\theta)}{d \theta}=\frac{n}{\theta}+\sum_{i=1}^{n} \log \left(y_{i}\right) .
$$

The first derivative is zero at $\widehat{\theta}$:

$$
\frac{n}{\hat{\theta}}+\sum_{i=1}^{n} \log \left(y_{i}\right)=0 .
$$

Thus,

$$
\widehat{\theta}=\frac{-n}{\sum_{i=1}^{n} \log \left(y_{i}\right)} .
$$

For the sample $0.35,0.28,0.91$, we have:

$$
\hat{\theta}=\frac{-3}{\log (0.35)+\log (0.28)+\log (0.91)}=1.24
$$

