
QBUS6810 Statistical Learning and Data Mining

Question 1. Decompose the Expected Prediction Error into three parts: Irreducible error,
squared Bias, and Variance (slides 33-35 of Lecture 1).

Solution: We treat x0 and f as fixed, i.e. non-random. Note that Y0 is not in the
original sample, and so f̂ is independent of both Y0 and ε0. We have:

EPE =E
[(
Y0 − f̂(x0)

)2
]

= E
[(
f(x0) + ε0 − f̂(x0)

)2
]

= E
[(
ε0 +

(
f(x0) − f̂(x0)

))2
]

=E
[
ε2

0

]
+ 2E

[
ε0
(
f(x0) − f̂(x0)

)]
+ E

[(
f(x0) − f̂(x0)

)2
]
.

Note that 2E
[
ε0
(
f(x0) − f̂(x0)

)]
= 0, because ε0 is independent from

(
f(x0) − f̂(x0)

)
,

and E [ε0] = 0, which implies E
[
ε0
(
f(x0) − f̂(x0)

)]
= E [ε0]E

[
f(x0) − f̂(x0)

]
= 0.

Also note that, by definition, Var (ε0) = E [ε2
0]−

(
E [ε0]

)2
. Thus, E [ε2

0] = Var (ε0) = σ2.
Consequently,

EPE =σ2 + E
[(
f(x0) − f̂(x0)

)2
]

= Irreducible error + Reducible error.

Now we focus on the Reducible error:

E
[(
f(x0) − f̂(x0)

)2
]

= E

[(
f(x0) − E

[
f̂(x0)

]
+ E

[
f̂(x0)

]
− f̂(x0)

)2
]

=
(
f(x0) − E

[
f̂(x0)

])2
+ 2E

[(
f(x0) − E

[
f̂(x0)

])(
E
[
f̂(x0)

]
− f̂(x0)

)]
+ E

[(
E
[
f̂(x0)

]
− f̂(x0)

)2
]
.

The middle term is zero again. To see this note that the only random component in this
term is f̂(x0), and E

[
E
[
f̂(x0)

]
− f̂(x0)

]
= 0. Hence, the Reducible error is:

(
f(x0) − E

[
f̂(x0)

])2
+ E

[(
E
[
f̂(x0)

]
− f̂(x0)

)2
]

=
(
E
[
f̂(x0)

]
− f(x0)

)2
+ E

[(
f̂(x0) − E

[
f̂(x0)

])2
]

= Bias2
(
f̂(x0)

)
+ Var

(
f̂(x0)

)

Putting it all together,

EPE = σ2 + Bias2
(
f̂(x0)

)
+ Var

(
f̂(x0)

)
.
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Question 2. Show that the OLS estimator is unbiased, i.e., derive the following:

Eβ̂ = β.

Treat the x values as fixed (i.e. non-random) and use the formula for the OLS estimator.

Solution: Recall that the expected value of the error terms in the MLR model is zero.
We will make use of the following formulas (and all the corresponding notation) from
Lecture 3:

β̂ = (XTX)−1XTy and

y = Xβ + ε.

In the following expected value calculations, non-random matrixes are treated as con-
stants, which we can be factored out of the expected values. We have:

Eβ̂ = E
[
(XTX)−1XTy

]
= E

[
(XTX)−1XT (Xβ + ε)

]
= E

[
(XTX)−1XTXβ

]
+ E

[
(XTX)−1XTε

]
= (XTX)−1(XTX)β + (XTX)−1XTEε

= β.
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Question 3. Let y1, . . . , yn be a sample from a distribution with the density function
p(y; θ) = θyθ−1 for 0 < y < 1, where θ > 0.

Find θ̂, the maximum likelihood estimator of θ.
Compute θ̂ for the sample y1 = 0.35, y2 = 0.28, y3 = 0.91.

Solution: The likelihood function is

`(θ) = p(y1; θ)p(y2; θ) . . . p(yn; θ)

=
n∏
i=1

θyθ−1
i

= θn
n∏
i=1

yθ−1
i .

Taking the natural log:

L(θ) = log(`(θ)) = n log(θ) + (θ − 1)
n∑
i=1

log(yi).

The first derivative is

dL(θ)
dθ

= n

θ
+

n∑
i=1

log(yi).

The first derivative is zero at θ̂:

n

θ̂
+

n∑
i=1

log(yi) = 0.

Thus,

θ̂ = −n∑n
i=1 log(yi)

.

For the sample 0.35, 0.28, 0.91, we have:

θ̂ = −3
log(0.35) + log(0.28) + log(0.91) = 1.24.
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