MEIGUODAIXIECOM

1. The 1-nearest neighbour for each training data point is itself, so the training error is
always zero and test error is 36%), higher than the test error by logistic regression. We
prefer to use the logistic regression.

2. Let Y = 0 and Y = 1 denote Classes 1 and 2 respectively. Let g;(z) = 11(0 < z < 4)

and go(x) = %I(—Q < x < 1) be the density function for X|Y = 0 and X|Y = 1,
. . () P(Y'=0) _ 1/4x1/3 _ 3
respectively. For x € [0, 1], since gl(x)P(fii:O)—ﬁ—gg(x)P(Y:l) = Uixisrsan — i We

always classify x to Class 2. The corresponding Bayesian error rate is e(x) = 3/11. For

x ¢ [0,1] since ¢g1(x) and g2(z) do not overlap, then e(x) = 0.
Ee(X) = E [%[(X 0 1])} _ %P(X €0,1])

_ %{P(X € [0,1]]Y =0)P(Y = 0) + P(X € [0,1]]Y = 1)P(Y = 1)}
o3 /1 1 1 2\ 1
- ﬁ(zxg+§xg)—ﬁ-

3. Note g;(x) = (2m) V4%;| V2 exp {—2(x — uj)TEj*l(x— p;)}t,j = 1,2 where x =
(71, 22)T. Then the Bayes decision rule is given by

Class 1 if m1g1(x) > m2g2(x),
Class 2 otherwise

Solve for m1g1(x) > mage(X), i.e. logm + log(gi(x)) > logms + log(g2(x)) and some
calculations show that the Bayes decision rule is given by

Class 1 if %xl — % +log2 >0
Class 2 otherwise

Or one can use discriminant score for LDA, since the covariance matrices for two classes
are the same.

4. Let ¢1(x),g2(x), g3(x) be the density function for X|Y = 1, X|Y = 2, X|Y = 3,
gi(z) P(Y'=1)

o) .t = 1,2,3. We only need to compare

respectively. P(Y = i|X = z) =

migi(%o)’s

2 1
mgi(v0) = £ X 5-exp |=5(0.3 0,03 - 0)(0.3 0,03 — 0)"| = 0.0582;

—e
2

1


ирина
Штамп


2 1
maga(0) = = p {—5(0.3 ~1,03-1)(0.3-1,0.3 — 1)T1 = 0.0390;
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miga(t0) = X —exp {—5(0.3 ~0.5,0.3—0.5)(0.3 — 0.5,0.3 — 0.5)T]
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— x —exp [—=(0.340.5,0.3 — 0.5)(0.3 +0.5,0.3 — 0.5)" | = 0.0266
5 4m 2

Since g1 (7o) is the largest, we classify zo = (0.3,0.3)” to be from Class 1.

5. See the solution to problem 5 of HW 2 generated by R Markdown (provided by Cheng
Chen, TA for ST443).



