MEIGUODAIXIECOM

- 1. The 1-nearest neighbour for each training data point is itself, so the training error is always zero and test error is 36%, higher than the test error by logistic regression. We prefer to use the logistic regression.
- 2. Let Y = 0 and Y = 1 denote Classes 1 and 2 respectively. Let $g_1(x) = \frac{1}{4}I(0 \le x \le 4)$ and $g_2(x) = \frac{1}{3}I(-2 \le x \le 1)$ be the density function for X|Y = 0 and X|Y = 1, respectively. For $x \in [0,1]$, since $\frac{g_1(x)P(Y=0)}{g_1(x)P(Y=0)+g_2(x)P(Y=1)} = \frac{1/4 \times 1/3}{1/4 \times 1/3 + 1/3 \times 2/3} = \frac{3}{11}$, we always classify x to Class 2. The corresponding Bayesian error rate is $\varepsilon(x) = 3/11$. For $x \notin [0,1]$ since $g_1(x)$ and $g_2(x)$ do not overlap, then $\varepsilon(x) = 0$.

$$E[\varepsilon(X)] = E\left[\frac{3}{11}I(X \in [0,1])\right] = \frac{3}{11}P(X \in [0,1])$$

= $\frac{3}{11}\{P(X \in [0,1]|Y=0)P(Y=0) + P(X \in [0,1]|Y=1)P(Y=1)\}$
= $\frac{3}{11}\left(\frac{1}{4} \times \frac{1}{3} + \frac{1}{3} \times \frac{2}{3}\right) = \frac{1}{12}.$

3. Note $g_j(\mathbf{x}) = (2\pi)^{-1/2} |\mathbf{\Sigma}_j|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_j)^T \mathbf{\Sigma}_j^{-1}(\mathbf{x}-\boldsymbol{\mu}_j)\right\}, j = 1, 2$ where $\mathbf{x} = (x_1, x_2)^T$. Then the Bayes decision rule is given by

$$\begin{cases} \text{Class 1} & \text{if } \pi_1 g_1(\mathbf{x}) > \pi_2 g_2(\mathbf{x}), \\ \text{Class 2} & \text{otherwise} \end{cases}$$

Solve for $\pi_1 g_1(\mathbf{x}) > \pi_2 g_2(\mathbf{x})$, i.e. $\log \pi_1 + \log(g_1(\mathbf{x})) > \log \pi_2 + \log(g_2(\mathbf{x}))$ and some calculations show that the Bayes decision rule is given by

$$\begin{cases} \text{Class 1} & \text{if } \frac{1}{2}x_1 - \frac{3}{4} + \log 2 > 0\\ \text{Class 2} & \text{otherwise} \end{cases}$$

Or one can use discriminant score for LDA, since the covariance matrices for two classes are the same.

4. Let $g_1(x), g_2(x), g_3(x)$ be the density function for X|Y = 1, X|Y = 2, X|Y = 3, respectively. $P(Y = i|X = x) = \frac{g_i(x)P(Y=i)}{f(x)}, i = 1, 2, 3$. We only need to compare $\pi_i g_i(x_0)$'s

$$\pi_1 g_1(x_0) = \frac{2}{5} \times \frac{1}{2\pi} \exp\left[-\frac{1}{2}(0.3 - 0, 0.3 - 0)(0.3 - 0, 0.3 - 0)^T\right] = 0.0582;$$

$$\pi_2 g_2(x_0) = \frac{2}{5} \times \frac{1}{2\pi} \exp\left[-\frac{1}{2}(0.3 - 1, 0.3 - 1)(0.3 - 1, 0.3 - 1)^T\right] = 0.0390;$$

$$\pi_3 g_3(x_0) = \frac{1}{5} \times \frac{1}{4\pi} \exp\left[-\frac{1}{2}(0.3 - 0.5, 0.3 - 0.5)(0.3 - 0.5, 0.3 - 0.5)^T\right]$$

$$\frac{1}{5} \times \frac{1}{4\pi} \exp\left[-\frac{1}{2}(0.3 + 0.5, 0.3 - 0.5)(0.3 + 0.5, 0.3 - 0.5)^T\right] = 0.0266$$

Since $\pi_1 g_1(x_0)$ is the largest, we classify $x_0 = (0.3, 0.3)^T$ to be from Class 1.

5. See the solution to problem 5 of HW 2 generated by R Markdown (provided by Cheng Chen, TA for ST443).